Skip to yearly menu bar Skip to main content


Poster

Decomposition of Neural Discrete Representations for Large-Scale 3D Mapping

Minseong Park · Suhan Woo · Euntai Kim

# 314
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Project Page ] [ Paper PDF ]
Wed 2 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Learning efficient representations of local feature is a key challenge in feature volume-based 3D neural mapping, especially in large-scale environments. In this paper, we introduce Decomposition-based Neural Mapping (DNMap), a storage-efficient large-scale 3D mapping method employing discrete representation based on decomposition strategy. This decomposition strategy aims to efficiently capture repetitive and representative patterns of shapes by decomposing each discrete embedding into component vectors that are shared across the embedding space. Our DNMap optimizes a set of component vectors, rather than entire discrete embeddings, and learns composition rather than indexing the discrete embeddings. Furthermore, to complement the mapping quality, we additionally learn low-resolution continuous embeddings that require tiny storage space. By combining these representations with a shallow neural network and an efficient octree-based feature volume, our DNMap successfully approximates signed distance function and an efficient octree-based feature volume, our DNMap successfully compress the feature volume while preserving mapping quality.

Live content is unavailable. Log in and register to view live content