Skip to yearly menu bar Skip to main content


Poster

SlotLifter: Slot-guided Feature Lifting for Learning Object-Centric Radiance Fields

Yu Liu · Baoxiong Jia · Yixin Chen · Siyuan Huang

# 219
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Project Page ] [ Paper PDF ]
Tue 1 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

The ability to distill object-centric abstractions from intricate visual scenes underpins human-level generalization. Despite the significant progress in object-centric learning methods, learning object-centric representations in the 3D physical world remains a crucial challenge. In this work, we propose SlotLifter, a novel object-centric radiance model that aims to address the challenges of scene reconstruction and decomposition via slot-guided feature lifting. Such a design unites object-centric learning representations and image-based rendering methods, offering state-of-the-art performance in scene decomposition and novel-view synthesis on four challenging synthetic and four complex real-world datasets, outperforming existing 3D object-centric learning methods by a large margin. Through extensive ablative studies, we showcase the efficacy of each design in SlotLifter, shedding light on key insights for potential future directions.

Live content is unavailable. Log in and register to view live content