Skip to yearly menu bar Skip to main content


Poster

Learning Non-Linear Invariants for Unsupervised Out-of-Distribution Detection

Lars Doorenbos · Raphael Sznitman · Pablo Márquez Neila

Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ]
Tue 1 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

The inability of deep learning models to handle data drawn from unseen distributions has sparked much interest in unsupervised out-of-distribution (U-OOD) detection, as it is crucial for reliable deep learning models. Despite considerable attention, theoretically-motivated approaches are few and far between, with most methods building on top of some form of heuristic. Recently, U-OOD was formalized in the context of data invariants, allowing a clearer understanding of how to characterize U-OOD, and methods leveraging affine invariants have attained state-of-the-art results on large-scale benchmarks. Nevertheless, the restriction to affine invariants hinders the expressiveness of the approach. In this work, we broaden the affine invariants formulation to a more general case and propose a framework consisting of a normalizing flow-like architecture capable of learning non-linear invariants. Our novel approach achieves state-of-the-art results on an extensive U-OOD benchmark, and we demonstrate its further applicability to tabular data. Finally, we show our method has the same desirable properties as those based on affine invariants.

Live content is unavailable. Log in and register to view live content