Skip to yearly menu bar Skip to main content


Poster

POA: Pre-training Once for Models of All Sizes

Yingying Zhang · Xin Guo · Jiangwei Lao · Lei Yu · Lixiang Ru · Jian Wang · Guo Ye · HUIMEI HE · Jingdong Chen · Ming Yang

Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ]
Tue 1 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Large-scale self-supervised pre-training has paved the way for one foundation model to handle many different vision tasks. Most pre-training methodologies train a single model of a certain size at one time. Nevertheless, various computation or storage constraints in real-world scenarios require substantial efforts to develop a series of models with different sizes to deploy. Thus, in this study, we propose a novel tri-branch self-supervised training framework, termed as POA (Pre-training Once for All), to tackle this aforementioned issue. Our approach introduces an innovative elastic student branch into a modern self-distillation paradigm. At each pre-training step, we randomly sample a sub-network from the original student to form the elastic student and train all branches in a self-distilling fashion. Once pre-trained, POA allows the extraction of pre-trained models of diverse sizes for downstream tasks. Remarkably, the elastic student facilitates the simultaneous pre-training of multiple models with different sizes, which also acts as an additional ensemble of models of various sizes to enhance representation learning. Extensive experiments, including k-nearest neighbors, linear probing evaluation and assessments on downstream tasks demonstrate the effectiveness and advantages of our POA. It achieves state-of-the-art performance using ViT, Swin Transformer and ResNet backbones, producing around a hundred models with different sizes through a single pre-training session. We will release the code and pre-trained models of POA to share with community in the future.

Live content is unavailable. Log in and register to view live content