The electronic writing tools, while enhancing convenience, sacrifice the readability and efficiency of handwritten content. Balancing high efficiency with readable handwriting poses a challenging research task. In this paper, we propose a method sequence-based models to beautify user handwritten traces. Unlike most existing methods that treat Chinese handwriting as images and cannot reflect the human writing process, we capture individual writing characteristics from a small amount of user handwriting trajectories and beautify the user's traces by mimicking their writing style and process. We fully consider the style of radicals and components between the content and reference glyphs, assigning appropriate fine-grained styles to strokes in the content glyphs through a cross-attention mechanism module. Additionally, we find that many style features contribute minimally to the final stylized results. Therefore, we decompose the style features into the Cartesian product of single-dimensional variable sets, effectively removing redundant features with limited impact on the stylization effect while preserving key style information. Qualitative and quantitative experiments both demonstrate the superiority of our approach.
Live content is unavailable. Log in and register to view live content