Skip to yearly menu bar Skip to main content


Poster

MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders

Baijiong Lin · Weisen Jiang · Pengguang Chen · Yu Zhang · Shu Liu · Yingcong Chen

Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ]
Fri 4 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Multi-task dense scene understanding, which learns a model for multiple dense prediction tasks, has a wide range of application scenarios. Modeling long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba, a novel Mamba-based architecture for multi-task scene understanding. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging Mamba, while CTM explicitly models task interactions to facilitate information exchange across tasks. Experiments on NYUDv2 and PASCAL-Context datasets demonstrate the superior performance of MTMamba over Transformer-based and CNN-based methods. Notably, on the PASCAL-Context dataset, MTMamba achieves improvements of +2.08, +5.01, and +4.90 over the previous best method in the tasks of semantic segmentation, human parsing, and object boundary detection, respectively. Source code will be made available upon acceptance.

Live content is unavailable. Log in and register to view live content