Camera-based 3D occupancy prediction has recently garnered increasing attention in outdoor driving scenes. However, research in indoor scenes remains relatively unexplored. The core differences in indoor scenes lie in the complexity of scene scale and the variance in object size. In this paper, we propose a novel method, named ISO, for predicting indoor scene occupancy using monocular images. ISO harnesses the advantages of a pretrained depth model to achieve accurate depth predictions. Subsequently, it employs a Dual Feature Line of Sight Projection(D-FLoSP) module to facilitate the learning of 3D voxel features. Additionally, we introduce a large-scale occupancy benchmark for indoor scenes, titled Occ-ScanNet. With a dataset size 40 times larger than the NYUv2 dataset, it facilitates future scalable research in indoor scene analysis. Experimental results on both NYUv2 and Occ-ScanNet demonstrate that our method achieves state-of-the-art performance. The dataset and code will be made publicly available.
Live content is unavailable. Log in and register to view live content