Skip to yearly menu bar Skip to main content


Poster

Neural Spectral Decomposition for Dataset Distillation

Yang Shaolei · Shen Cheng · Mingbo Hong · Haoqiang Fan · Xing Wei · Shuaicheng Liu

# 219
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Thu 3 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

In this paper, we propose Neural Spectrum Decomposition, a generic decomposition framework for dataset distillation. Unlike previous methods, we consider the entire dataset as a high-dimensional observation that is low-rank across all dimensions. We aim to discover the low-rank representation of the entire dataset and perform distillation efficiently. Toward this end, we learn a set of spectrum tensors and transformation matrices, which, through simple matrix multiplication, reconstruct the data distribution. Specifically, a spectrum tensor can be mapped back to the image space by a transformation matrix, and efficient information sharing during the distillation learning process is achieved through pairwise combinations of different spectrum vectors and transformation matrices. Furthermore, we integrate a trajectory matching optimization method guided by a real distribution. Our experimental results demonstrate that our approach achieves state-of-the-art performance on benchmarks, including CIFAR10, CIFAR100 and Tiny Imagenet.

Live content is unavailable. Log in and register to view live content