Skip to yearly menu bar Skip to main content


Poster

LLaVA-UHD: an LMM Perceiving any Aspect Ratio and High-Resolution Images

Zonghao Guo · Ruyi Xu · Yuan Yao · Junbo Cui · Zanlin Ni · Chunjiang Ge · Tat-Seng Chua · Zhiyuan Liu · Gao Huang

# 206
[ ] [ Paper PDF ]
Thu 3 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Visual encoding constitutes the basis of large multimodal models (LMMs) in understanding the visual world. Conventional LMMs process images in fixed sizes and limited resolutions, while recent explorations in this direction are limited in adaptivity, efficiency, and even correctness. In this work, we first take GPT-4V and LLaVA 1.5 as representative examples and expose systematic flaws rooted in their visual encoding strategy. To address the challenges, we present LLaVA-UHD, a large multimodal model that can efficiently perceive images in any aspect ratio and high resolution. LLaVA-UHD includes three key components: (1) An image modularization strategy that divides native-resolution images into smaller variable-sized slices for efficient and extensible encoding, (2) a compression module that further condenses image tokens from visual encoders, and (3) a spatial schema to organize slice tokens for LLMs. Comprehensive experiments show that LLaVA-UHD outperforms established LMMs trained with 2-3 orders of magnitude more data on 9 benchmarks. Notably, our model built on LLaVA-1.5 336x336 supports 6 times larger (i.e., 672x1088) resolution images using only 94% computation, and achieves 6.4 accuracy improvement on TextVQA. All the data and codes will be publicly available to facilitate future research.

Live content is unavailable. Log in and register to view live content