Abstract:
Both self-supervised depth estimation and Structure-from-Motion (SfM) recover scene depth from RGB videos. Despite sharing a similar objective, the two approaches are disconnected. Prior works of self-supervision backpropagate losses defined within immediate neighboring frames. Instead of learning-through-loss, this work proposes an alternative scheme by performing local SfM. First, with calibrated RGB or RGB-D images, we employ a depth and correspondence estimator to infer depthmaps and pair-wise correspondence maps. Then, a novel bundle-RANSAC-adjustment algorithm jointly optimizes camera poses and one depth adjustment for each depthmap. Finally, we fix camera poses and employ a NeRF, however, without a neural network, for dense triangulation and geometric verification. Poses, depth adjustments, and triangulated sparse depths are our outputs. For the first time, we show self-supervision within $5$ frames already benefits SoTA supervised depth and correspondence models. Despite self-supervision, we outperform COLMAP in pose accuracy and robustness. Finally, our method enables NeRF over arbitrary short videos. Codes and models will be released.
Live content is unavailable. Log in and register to view live content