Skip to yearly menu bar Skip to main content


Poster

Delving Deep into Engagement Prediction of Short Videos

dasong Li · Wenjie Li · Baili Lu · Hongsheng LI · Sizhuo Ma · Gurunandan Krishnan · Jian Wang

# 187
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Thu 3 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Understanding and modeling the popularity of User Generated Content (UGC) short videos on social media platforms presents a critical challenge with broad implications for content creators and recommendation systems. This study delves deep into the intricacies of predicting engagement for newly published videos with limited user interactions. Surprisingly, our findings reveal that Mean Opinion Scores from previous video quality assessement datasets do not strongly correlate with video engagement levels. To address this, we introduce a substantial dataset comprising 90,000 real-world UGC short videos from Snapchat. Rather than relying on view count, average watch time, or rate of likes, we propose two metrics: normalized average watch percentage (NAWP) and engagement continuation rate (ECR) to describe the engagement levels of short videos. Comprehensive multi-modal features, including visual content, background music, and text data, are investigated to enhance engagement prediction. With the proposed dataset and two key metrics, our method demonstrates its ability to predict engagements of short videos purely from video content.

Live content is unavailable. Log in and register to view live content