Skip to yearly menu bar Skip to main content


Poster

Local Action-Guided Motion Diffusion Model for Text-to-Motion Generation

Peng Jin · Hao Li · Zesen Cheng · Kehan Li · Runyi Yu · Chang Liu · Xiangyang Ji · Li Yuan · Jie Chen

# 215
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Project Page ] [ Paper PDF ]
Thu 3 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Text-to-motion generation requires not only grounding local actions in language but also seamlessly blending these individual actions to synthesize diverse and realistic global motions. However, existing motion generation methods primarily focus on the direct synthesis of global motions while neglecting the importance of generating and controlling local actions. In this paper, we propose the local action-guided motion diffusion model, which facilitates global motion generation by utilizing local actions as fine-grained control signals. Specifically, we provide an automated method for reference local action sampling and leverage graph attention networks to assess the guiding weight of each local action in the overall motion synthesis. During the diffusion process for synthesizing global motion, we calculate the local-action gradient to provide conditional guidance. This local-to-global paradigm reduces the complexity associated with direct global motion generation and promotes motion diversity via sampling diverse actions as conditions. Extensive experiments on two human motion datasets, i.e., HumanML3D and KIT, demonstrate the effectiveness of our method. Furthermore, our method provides flexibility in seamlessly combining various local actions and continuous guiding weight adjustment, accommodating diverse user preferences, which may hold potential significance for the community.

Live content is unavailable. Log in and register to view live content