Skip to yearly menu bar Skip to main content


Poster

Rethinking Directional Parameterization in Neural Implicit Surface Reconstruction

Zijie Jiang · Tianhan Xu · Hiroharu Kato

# 282
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Tue 1 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Multi-view 3D surface reconstruction using neural implicit representations has made notable progress by modeling the geometry and view-dependent radiance fields within a unified framework. However, their effectiveness in reconstructing objects with specular or complex surfaces is typically biased by the directional parameterization used in their view-dependent radiance network. Viewing direction and reflection direction are the two most commonly used directional parameterizations but have their own limitations. Typically, utilizing the viewing direction usually struggles to correctly decouple the geometry and appearance of objects with highly specular surfaces, while using the reflection direction tends to yield overly smooth reconstructions for concave or complex structures. In this paper, we analyze their failed cases in detail and propose a novel hybrid directional parameterization to address their limitations in a unified form. Extensive experiments demonstrate the proposed hybrid directional parameterization consistently delivered satisfactory results in reconstructing objects with a wide variety of materials, geometry and appearance, whereas using other directional parameterizations faces challenges in reconstructing certain objects. Moreover, the proposed hybrid directional parameterization is nearly parameter-free and can be effortlessly applied in any existing neural surface reconstruction method.

Live content is unavailable. Log in and register to view live content