Skip to yearly menu bar Skip to main content


Poster

Interpretability-Guided Test-Time Adversarial Defense

Akshay Ravindra Kulkarni · Tsui-Wei Weng

# 7
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Wed 2 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

In this work, we propose a novel and low-cost test-time defense by devising interpretability-guided neuron importance ranking methods to identify neurons important to the output classes. Our method is a training-free approach that can significantly improve the robustness-accuracy tradeoff while incurring minimal computational overhead. While being among the most efficient test-time defenses (4x faster), our method is also robust to a wide range of black-box, white-box, and adaptive attacks that break previous test-time defenses. We demonstrate the efficacy of our method for CIFAR10, CIFAR100, and ImageNet-1k on the standard RobustBench benchmark (with average gains of 2.6%, 4.9%, and 2.8% respectively). We also show improvements (average 1.5%) over the state-of-the-art test-time defenses even under strong adaptive attacks.

Live content is unavailable. Log in and register to view live content