Skip to yearly menu bar Skip to main content


Poster

CrossScore: A Multi-View Approach to Image Evaluation and Scoring

Zirui Wang · Wenjing Bian · Victor Adrian Prisacariu

# 297
[ ] [ Project Page ] [ Paper PDF ]
Wed 2 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

We introduce a novel cross-reference image quality assessment method that effectively fills the gap in the image assessment landscape, complementing the array of established evaluation schemes -- ranging from full-reference metrics like SSIM, no-reference metrics such as NIQE, to general-reference metrics including FID, and Multi-modal-reference metrics, e.g., CLIPScore. Utilising a neural network with the cross-attention mechanism and a unique data collection pipeline from NVS optimisation, our method enables accurate image quality assessment without requiring ground truth references. By comparing a query image against multiple views of the same scene, our method addresses the limitations of existing metrics in novel view synthesis (NVS) and similar tasks where direct reference images are unavailable. Experimental results show that our method is closely correlated to the full-referenced metric SSIM, while not requiring ground truth references. Our code will be publicly available.

Live content is unavailable. Log in and register to view live content