Poster
Octopus: Embodied Vision-Language Programmer from Environmental Feedback
Jingkang Yang · Yuhao Dong · Shuai Liu · Bo Li · Ziyue Wang · ChenCheng Jiang · Haoran Tan · Jiamu Kang · Yuanhan Zhang · Kaiyang Zhou · Ziwei Liu
# 165
Large vision-language models (VLMs) have achieved substantial progress in multimodal perception and reasoning. When integrated into an embodied agent, existing embodied VLM works either output detailed action sequences at the manipulation level or only provide plans at an abstract level, leaving a gap between high-level planning and real-world manipulation. To bridge this gap, we introduce Octopus, an embodied vision-language programmer that uses executable code generation as a medium to connect planning and manipulation. Octopus is designed to 1) proficiently comprehend an agent's visual and textual task objectives, 2) formulate intricate action sequences, and 3) generate executable code. To facilitate Octopus model development, we introduce OctoVerse: a suite of environments tailored for benchmarking vision-based code generators on a wide spectrum of tasks, ranging from mundane daily chores in simulators to sophisticated interactions in complex video games such as Grand Theft Auto (GTA) and Minecraft. To train Octopus, we leverage GPT-4 to control an explorative agent that generates training data, i.e., action blueprints and corresponding executable code. We also collect feedback that enables an enhanced training scheme called Reinforcement Learning with Environmental Feedback (RLEF). Through a series of experiments, we demonstrate Octopus's functionality and present compelling results, showing that the proposed RLEF refines the agent's decision-making. By open-sourcing our simulation environments, dataset, and model architecture, we aspire to ignite further innovation and foster collaborative applications within the broader embodied AI community.
Live content is unavailable. Log in and register to view live content