Poster
ReSyncer: Rewiring Style-based Generator for Unified Audio-Visually Synced Facial Performer
Jiazhi Guan · Zhiliang Xu · Hang Zhou · Kaisiyuan Wang · Shengyi He · Zhanwang Zhang · Borong Liang · Haocheng Feng · Errui Ding · Jingtuo Liu · Jingdong Wang · Youjian Zhao · Ziwei Liu
# 233
Strong Double Blind |
Lip-syncing videos with given audio is the foundation for various applications including the creation of virtual presenters or performers. While recent studies explore high-fidelity lip-sync with different techniques, their task-orientated models either require long-term videos for clip-specific training or retain visible artifacts. In this paper, we propose a unified and effective framework ReSyncer, that synchronizes generalized audio-visual facial information. The key design is revisiting and rewiring the Style-based generator to efficiently adopt 3D facial dynamics predicted by a principled style-injected Transformer. By simply re-configuring the information insertion mechanisms within the noise and style space, our framework fuses motion and appearance with unified training. Extensive experiments demonstrate that ReSyncer not only produces high-fidelity lip-synced videos according to audio in real-time, but also supports multiple appealing properties that are suitable for creating virtual presenters and performers, including fast personalized fine-tuning, video-driven lip-syncing, the transfer of speaking styles, and even face swapping.
Live content is unavailable. Log in and register to view live content