Skip to yearly menu bar Skip to main content


Poster

Self-Adapting Large Visual-Language Models to Edge Devices across Visual Modalities

Kaiwen Cai · ZheKai Duan · Gaowen Liu · Charles Fleming · Chris Xiaoxuan Lu

# 90
[ ] [ Project Page ] [ Paper PDF ]
Wed 2 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Recent advancements in Vision-Language (VL) models have sparked interest in their deployment on edge devices, yet challenges in handling diverse visual modalities, manual annotation, and computational constraints remain. We introduce EdgeVL, a novel framework that bridges this gap by seamlessly integrating dual-modality knowledge distillation and quantization-aware contrastive learning. This approach enables the adaptation of large VL models, like CLIP, for efficient use with both RGB and non-RGB images on resource-limited devices without the need for manual annotations. EdgeVL not only transfers visual language alignment capabilities to compact models but also maintains feature quality post-quantization, significantly enhancing open-vocabulary classification performance across various visual modalities. Our work represents the first systematic effort to adapt large VL models for edge deployment, showcasing up to 15.4% accuracy improvements on multiple datasets and up to 93-fold reduction in model size.

Live content is unavailable. Log in and register to view live content