

EUROPEAN CONFERENCE ON COMPUTER VISION

MILANO

DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

Wenhui Zhu¹* Xiwen Chen²* Peijie Qiu³* Aristeidis Sotiras³ Abolfazl Razi² Yalin Wang¹

1 Arizona State University, 2 Clemson University, 3 Washington University in St. Louis

Background

- Histological whole slide images (WSIs) are commonly used to diagnose a variety of cancers, e.g., breast cancer, lung cancer, etc.
- Challenge: An WSI is often gigapixels.
 - Typical ML cannot process it.
 - Labor-intensive to annotate
- Pipeline of Multiple Instance Learning (MIL):
 - Crop it into some small patches (~10k).
 - Each patch is an **instance**, and an WSI image is a **bag** that contains a collection of instances.
 - If at least one instance is positive (has tumor), the bag is positive.

3/4

Motivation

- Most MIL models for analyzing WSIs use the attention-based MIL (AB-MIL) framework, which treats instances independently and ignores correlations.
- While follow-up models address this by focusing **on instance correlations** within the same category, they overlook variations in phenotype, size, and spatial diversity, leading to incorrect correlations.
- Using **rate-distortion theory**, we quantify the diversity of instances, showing both between- and within-bag variations.

• We suggest using global learnable vectors to help network to learning diversity. The global vector will gather similar instance together by cross attention.

- K,V from instance embeddings, Q from the global vectors.
- •Two mechanisms to learn a reliable and diverse global vector:
 - •Positive instance alignment
 - •DPP diversity loss (theoretical guaranteed).
- •A class token to summarize all global vectors for final bag-level classification.

- Two mechanisms to learn a reliable and diverse global vector:
 - Positive instance alignment
 - DPP diversity loss (theoretical guaranteed).
- A class token to summarize all global vectors for final bag-level classification.

Positive Instance Alignment (reliable G)

Global Vectors G

Center of positive bag: $\tilde{\boldsymbol{x}}_{c}^{(pos)} = m\tilde{\boldsymbol{x}}_{c}^{(pos)} + (1-m)\frac{1}{|\mathcal{I}_{pos}|}\sum_{i\in\mathcal{I}_{pos}}\tilde{x}_{i}$ Center of negative bag: $\tilde{\boldsymbol{x}}_{c}^{(neg)} = m\tilde{\boldsymbol{x}}_{c}^{(neg)} + (1-m)\frac{1}{|\mathcal{I}_{neg}|}\sum_{i\in\mathcal{I}_{neg}}\tilde{x}_{i},$ Tricket

Triplet loss:

$$\mathcal{L}_{tri} = \sum_{k=1}^{K} [d_+(G_k, \tilde{x}_c^{(pos)}) - d_-(G_k, \tilde{x}_c^{(neg)}) + \mu]_+,$$

Push the global vectors close to the center of positive bags. Center is updated in a momentum fashion for stable training.

- We suggest using global learnable vectors to help network to learning diversity. The global vector will gather similar instance together by cross attention.
- Two mechanisms to learn a reliable and diverse global vector:
 - Positive instance alignment
 - DPP diversity loss (theoretical guaranteed).
- A class token to summarize all global vectors for final bag-level classification.

- We suggest using global learnable vectors to help network to learning diversity. The global vector will gather similar instance together by cross attention.
- Two mechanisms to learn a reliable and diverse global vector:
 - Positive instance alignment
 - DPP diversity loss (theoretical guaranteed).
- A class token to summarize all global vectors for final bag-level classification.

DPP-based Diversity Loss

- Determinantal Point Process (DPP): a probabilistic model of repulsion to select diverse subsets.
- Instead of using DPP to select subsets, we use it as a differentiable diversity measurement.
- It is theoretic guaranteed.

$$\boldsymbol{L} = \boldsymbol{G}\boldsymbol{G}^{ op} \in \mathbb{R}^{K imes K}$$

$$\mathcal{L}_{div} = -\log \det(\boldsymbol{G}\boldsymbol{G}^{\top}), \quad \text{s.t. } \|\boldsymbol{g}_i\| = 1 = C.$$

Theorem 1. Given a set of global vectors $\mathbf{G} = [\mathbf{g}_1^\top, \cdots, \mathbf{g}_K^\top]$ with $||\mathbf{g}_i|| = C, \forall i \in [K]$, maximizing the DPP-based diversity (i.e. $\max \det(\mathbf{G}\mathbf{G}^\top)$) results in orthogonal global vectors with $\mathbf{g}_i \perp \mathbf{g}_j, \forall i \neq j, i, j \in [K]$.

- We suggest using global learnable vectors to help network to learning diversity. The global vector will gather similar instance together by cross attention.
- Two mechanisms to learn a reliable and diverse global vector:
 - Positive instance alignment
 - DPP diversity loss (theoretical guaranteed).
- A class token to summarize all global vectors for final bag-level classification.

Objective Function

$$\mathcal{L}_{final} = \mathcal{L}_{ce} + \lambda_{tri} \mathcal{L}_{tri} + \lambda_{div} \mathcal{L}_{div},$$

Cross-entropy for bag-level classification

Positive instance alignment

Diversity loss

Experimental Results

	CAMELYON16			TCGA-NSCLC		
	Accuracy	F1	AUC	Accuracy	F1	AUC
	ResNet-50 ImageNet Pretrained					
Classic AB-MIL (ICML'18)	$0.845_{(0.839, 0.851)}$	$0.780_{(0.769,0.791)}$	$0.854_{(0.848, 0.860)}$	$0.869_{0.032}$	$0.866_{0.021}$	$0.941_{0.028}$
DS-MIL (CVPR'21)	$0.856_{(0.843,0.869)}$	$0.815_{(0.797, 0.832)}$	$0.899_{(0.890, 0.908)}$	$0.888_{0.013}$	$0.876_{0.011}$	$0.939_{0.019}$
CLAM-SB (Nature Bio. Eng.'21)	$0.837_{(0.809, 0.865)}$	$0.775_{(0.755, 0.795)}$	$0.871_{(0.856, 0.885)}$	$0.875_{0.041}$	$0.864_{0.043}$	$0.944_{0.023}$
CLAM-MB (Nature Bio. Eng. 21)	$0.823_{(0.795, 0.850)}$	$0.774_{(0.752, 0.795)}$	$0.878_{(0.861, 0.894)}$	$0.878_{0.043}$	$0.874_{0.028}$	$0.949_{0.019}$
PMIL (MedIA'23)	$0.831_{(0.799, 0.863)}$	$0.816_{(0.779, 0.853)}$	$0.845_{(0.813, 0.876)}$	$0.873_{0.010}$	$0.875_{0.011}$	$0.933_{0.007}$
Trans-MIL (NeurIPS'21)	$0.858_{(0.848, 0.868)}$	$0.797_{(0.776, 0.818)}$	$0.906_{(0.875, 0.937)}$	$0.883_{0.022}$	$0.876_{0.021}$	$0.949_{0.013}$
DTFD-MIL (MaxS) (CVPR'22)	$0.864_{(0.848, 0.880)}$	$0.814_{(0.802, 0.826)}$	$0.907_{(0.894, 0.919)}$	$0.868_{0.040}$	$0.863_{0.029}$	$0.919_{0.037}$
DTFD-MIL (MaxMinS) (CVPR'22)	$0.899_{(0.887, 0.912)}$	$0.865_{(0.848,0.882)}$	$0.941_{(0.936, 0.944)}$	$0.894_{0.033}$	$0.891_{0.027}$	$0.961_{0.021}$
DTFD-MIL (AFS) (CVPR'22)	$0.908_{(0.892, 0.925)}$	$0.882_{(0.861, 0.903)}$	$0.946_{(0.941,0.951)}$	$0.891_{0.033}$	$0.883_{0.025}$	$0.951_{0.022}$
ILRA-MIL (ICLR'23)	$0.848_{(0.844,0.853)}$	$0.826_{(0.823, 0.829)}$	$0.868_{(0.852,0.883)}$	$0.895_{0.017}$	$0.896_{0.017}$	$0.946_{0.014}$
Our	$0.917_{(0.902, 0.931)}$	$0.913_{(0.898, 0.928)}$	$0.957_{(0.951, 0.963)}$	$0.908_{0.015}$	$0.911_{\scriptstyle 0.018}$	$0.963_{0.008}$
	ResNet-18 ImageNet Pretrained					
Classic AB-MIL (ICML'18)	$0.805_{(0.772, 0.837)}$	$0.786_{(0.757, 0.815)}$	$0.843_{(0.827, 0.858)}$	$0.874_{0.005}$	$0.873_{0.006}$	$0.937_{0.001}$
DS-MIL (CVPR'21)	$0.791_{(0.739, 0.843)}$	$0.776_{(0.712, 0.840)}$	$0.814_{(0.754, 0.875)}$	$0.831_{0.012}$	$0.838_{0.008}$	$0.896_{0.009}$
CLAM-SB (Nature Bio. Eng. 21)	$0.792_{(0.769, 0.815)}$	$0.766_{(0.746, 0.786)}$	$0.811_{(0.777, 0.845)}$	$0.869_{0.010}$	$0.869_{0.010}$	$0.931_{0.006}$
CLAM-MB (Nature Bio. Eng. '21)	$0.786_{(0.754, 0.818)}$	$0.770_{(0.746, 0.795)}$	$0.825_{(0.808, 0.843)}$	$0.880_{0.016}$	$0.880_{0.016}$	$0.944_{0.012}$
PMIL (MedIA'23)	$0.800_{(0.775, 0.825)}$	$0.784_{(0.765, 0.804)}$	$0.829_{(0.807, 0.851)}$	$0.856_{0.006}$	$0.862_{0.003}$	$0.933_{0.010}$
Trans-MIL (NeurIPS'21)	$0.839_{(0.822, 0.856)}$	$0.827_{(0.805, 0.848)}$	$0.854_{(0.823, 0.886)}$	$0.877_{0.009}$	$0.879_{0.008}$	$0.938_{0.014}$
DTFD-MIL (MaxS) (CVPR'22)	$0.856_{(0.824, 0.887)}$	$0.792_{(0.742,0.842)}$	$0.878_{(0.862, 0.893)}$	$0.830_{0.014}$	$0.821_{0.020}$	$0.893_{0.015}$
DTFD-MIL (MaxMinS) (CVPR'22)	$0.833_{(0.807, 0.858)}$	$0.768_{(0.747, 0.788)}$	$0.878_{(0.872, 0.883)}$	$0.853_{0.012}$	$0.850_{0.021}$	$0.925_{0.013}$
DTFD-MIL (AFS) (CVPR'22)	$0.817_{(0.791, 0.843)}$	$0.734_{(0.687, 0.781)}$	$0.868_{(0.841, 0.896)}$	$0.870_{0.007}$	$0.864_{0.012}$	$0.935_{0.010}$
ILRA-MIL (ICLR'23)	$0.831_{(0.768, 0.895)}$	$0.819_{(0.768, 0.871)}$	$0.852_{(0.811, 0.893)}$	$0.878_{0.002}$	$0.879_{0.001}$	$0.937_{0.004}$
Our	$0.873_{(0.862, 0.884)}$	$0.862_{(0.852, 0.871)}$	$0.898_{(0.886,0.909)}$	$0.891_{0.029}$	$0.890_{0.021}$	$0.955_{0.023}$
	Vision Transformer ImageNet Pretrained					
Classic AB-MIL (ICML'18)	$0.851_{(0.837, 0.865)}$	$0.835_{(0.810, 0.860)}$	$0.873_{(0.840,0.906)}$	$0.904_{0.011}$	$0.904_{0.010}$	$0.953_{0.013}$
DS-MIL $(CVPR'21)$	$0.810_{(0.741, 0.879)}$	$0.806_{(0.742, 0.869)}$	$0.871_{(0.836, 0.906)}$	$0.875_{0.020}$	$0.879_{0.016}$	$0.933_{0.016}$
CLAM-SB (Nature Bio. Eng. 21)	$0.839_{(0.831, 0.847)}$	$0.816_{(0.799, 0.834)}$	$0.864_{(0.841, 0.887)}$	$0.907_{0.008}$	$0.907_{0.001}$	$0.954_{0.014}$
CLAM-MB (Nature Bio. Eng. '21)	$0.826_{(0.806, 0.846)}$	$0.804_{(0.795, 0.813)}$	$0.851_{(0.825, 0.878)}$	$0.911_{0.007}$	$0.911_{0.007}$	$0.959_{0.008}$
PMIL (MedIA'23)	$0.843_{(0.831, 0.856)}$	$0.826_{(0.814, 0.838)}$	$0.843_{(0.820, 0.867)}$	$0.882_{0.009}$	$0.884_{0.006}$	$0.940_{0.006}$
Trans-MIL (NeurIPS'21)	$0.862_{(0.841, 0.883)}$	$0.846_{(0.823, 0.869)}$	$0.860_{(0.848, 0.873)}$	$0.909_{0.009}$	$0.909_{0.009}$	$0.953_{0.006}$
DTFD-MIL (MaxS) (CVPR'22)	$0.846_{(0.832, 0.860)}$	$0.767_{(0.746, 0.787)}$	$0.859_{(0.842, 0.876)}$	$0.904_{0.011}$	$0.904_{0.010}$	$0.953_{0.013}$
DTFD-MIL (MaxMinS) (CVPR'22)	$0.839_{(0.826, 0.851)}$	$0.752_{(0.742, 0.763)}$	$0.862_{(0.836, 0.888)}$	$0.895_{0.013}$	$0.892_{0.016}$	$0.952_{0.011}$
DTFD-MIL (AFS) (CVPR'22)	$0.831_{(0.818, 0.844)}$	$0.759_{(0.737, 0.781)}$	$0.880_{(0.864, 0.897)}$	$0.901_{0.005}$	$0.900_{0.008}$	$0.959_{0.012}$
ILRA-MIL (ICLR'23)	$0.850_{(0.825, 0.875)}$	$0.838_{(0.812, 0.865)}$	$0.864_{(0.843,0.885)}$	$0.902_{0.007}$	$0.904_{0.007}$	$0.954_{0.006}$
Our	$0.893_{(0.889,0.897)}$	$0.882_{(0.877, 0.886)}$	$0.891_{(0.884,0.899)}$	$0.926_{0.008}$	$0.925_{0.008}$	$0.969_{0.004}$

Outperforms all recent SOTAs!

Visualization

Fig. 5: Visualization of the attention map: (a) raw WSI with the ground-truth annotation, (b) the attention map computes using the tokenized global vectors, and (c-g) the attention map computes using the other (K-1) global vectors with K = 6 in our experiment.

Thanks for Watching!