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Model Stock: All we need is just 
a few fine-tuned models
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• Traditional robust fine-tuning methods like Model Soup require dozens of fine-tuned weights 

• We introduce Model Stock, a novel fine-tuning method that enhances both in-distribution and out-of-
distribution performance while drastically reducing computational costs.

Introduction
Robust Fine-tuning



Observation 1: Angle and Norm Consistency among Fine-tuned Weights
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Observation 2: Distance from the Center of Weights and Performance
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Distance vs. Random Weights’ Performance
Observation 2: Distance and Performance
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Method: Find the Closest Weight to the Center using Pre-trained Weight
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Method: Model Stock
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Method: Model Stock
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Method: Model Stock
N fine-tuned weights

            wH =
2 cos θ

1 + cos θ
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2 cos θ
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Generalize (merging N models)

w(N)
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avr + (1 − t) ⋅ w0, s.t. t =
N cos θ

1 + (N − 1)cos θ
.



• Leveraging the fact that norm and angle consistencies hold even during training, we 
adopt periodic merging to gradually approach the weight center at each epoch.

Method: Model Stock
Periodic Merging
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Experimental Results



Experiments
CLIP ViT-B/32 fine-tuned on ImageNet
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Experiments
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Experiments
Post-training Merging
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