A Watermark-Conditioned Diffusion Model for IP Protection

Rui Min, Sen Li, Hongyang Chen, Minhao Cheng

Introduction: Protect Against IP Infringement in the Era of Generative Models

Background: Fingerprinting in Diffusion Models

Problem Setting: Detection and Identification

Methodology: Watermark-conditioned Diffusion Model

Ensuring Safe Usage: Generative Models Needs Careful Auditing

- Generative models are powerful tools that affect a wide range of fields, as they create realistic content and drive innovation in various industries [1, 2].
- Although displaying these emergent capabilities, the misuse of the generative model can be harmful coupled with significant ethical and social impacts [3].
- Thus it is urgent to regulate and audit the usage of generative models to make them more responsible and transparent for society.
- [1]. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis, ICML 2024
- [2]. Improving Image Generation with Better Captions
- [3]. A Blueprint for Auditing Generative AI

An Example of How We Protect the IP of A Diffusion Model

Different users are assigned with unique watermarks, which help regulate the usage of generative models and generative content.

Introduction: Protect Against IP Infringement in the Era of Generative Models

Background: Fingerprinting in Diffusion Models

Problem Setting: Detection and Identification

Methodology: Watermark-conditioned Diffusion Model

Two Types of Watermarking Schemes

- Post-hoc watermarking after generation.
 - Post-hoc watermarks have been researched for decades and are widely used to protect IP [1].
 It is usually model-agnostic and fingerprints the generative content after the generation.
 - While demonstrating both efficacy and robustness, it decouples with the generation process which is more likely to be evaded in practice.
- Implanting watermarks during generation.
 - Recent studies [2, 3] demonstrate the feasibility of fingerprinting during the generation process. This mechanism improves efficiency by eliminating the need to process after the generation process.
 - More importantly, this strategy is hard to bypass due to the integrity of fingerprinting and generation.
- [1]. HiDDeN: Hiding Data With Deep Networks, ECCV 2018
- [2]. The Stable Signature: Rooting Watermarks in Latent Diffusion Models, ICCV 2023
- [3]. Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust, NeurIPS 2023

Popular Strategies to Watermark Diffusion Models

- ▶ DWT-DCT [1]
 - DWT-DCT is adopted in the official implementation of Stable Diffusion.
 - While easy to implement, this watermarking strategy could be easily bypassed by simply commenting a line of code.
- Stable Signature [2]
 - Stable Signature fingerprints the latent decoder of latent diffusion models. Each decoder is assigned a unique watermark and distributed to downstream users.
 - This method is inefficient for a number of users since it needs customized fine-tuning which undermines its efficiency and flexibility.
- ► Tree-Ring [3]
 - Tree-Ring embeds watermarks into the initial noise by adding a predefined watermarking pattern in the noise's frequency space.
 - This method suffers distinguishing users with different watermarks.
- [1]. Digital Watermarking and Steganography
- [2]. The Stable Signature: Rooting Watermarks in Latent Diffusion Models, ICCV 2023
- [3]. Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust, NeurIPS 2023

Introduction: Protect Against IP Infringement in the Era of Generative Models

Background: Fingerprinting in Diffusion Models

Problem Setting: Detection and Identification

Methodology: Watermark-conditioned Diffusion Model

Two Critical Tasks to Evaluate Watermarks

- Detection: Does the image comes from our model?
 - Suppose a user generate an image p conditioned by watermark w_i and our task is to determine whether p is generated from our model.
 - We first extract the source watermark denoted as \mathbf{w}_s and compare it with \mathbf{w}_i . We then calculate the number of matched bits as $M_i = \mathbf{w}_s \odot \mathbf{w}_i$, if M_i is larger than a predefined threshold, we can conclude that this image is generated from our model.
- Identification: Who generate this image?
 - Given n users, we have n individual watermarks denoted as $\{\mathbf{w}_1 \dots \mathbf{w}_n\}$, we perform our identification tasks by finding the user with the *closest* watermark with the \mathbf{w}_s . Formally, we have:

$$\arg\max_{i} M_{i}, \quad i \in \{1 \dots m\}.$$
(1)

Introduction: Protect Against IP Infringement in the Era of Generative Models

Background: Fingerprinting in Diffusion Models

Problem Setting: Detection and Identification

Methodology: Watermark-conditioned Diffusion Model

A High-Level Perspective on WaDiff

- Pre-train watermark decoder.
 - We pre-train a StegaStamp decoder in this process and further *freeze* the watermark decoder to guide the fine-tuning of the diffusion model.
 - This process is inspired by the Stable Signature. When designing the WaDiff, we also
 observe that fine-tuning the diffusion model with a pre-trained watermark decoder is more
 effective than jointly updating the decoder and the diffusion model.
- Embed watermarks.
 - To fingerprint the generative content, we reverse the noisy latent vector to the initial latent vector at each step and add watermarks to it.
- Preserve image consistency.
 - To further enhance the stealthiness of WaDiff across different users, we regularize the visual appearance of distinct watermarked images to be similar.

How to Fine-tune the Diffusion Model

Fine-tuning the whole model may significantly affect the generative quality.

- During the fine-tuning process, instead of updating the whole model, we observe that fine-tuning the first layer is sufficient to embed watermarks.
- On the contrary, when fine-tuning the whole architecture, we observe an undermined generative performance after a few tuning epochs.
- Add a null watermark when time steps are large.
 - Since the quality of reversed images is low when the time steps are large, we add a null watermark to these stages. The null watermark will never be used when generating images during practical usage.

Overview of WaDiff

13/18

Introduction: Protect Against IP Infringement in the Era of Generative Models

Background: Fingerprinting in Diffusion Models

Problem Setting: Detection and Identification

Methodology: Watermark-conditioned Diffusion Model

Identification Performance against up to One Million Users

Table 1: This table includes our main results. Trace m indicates the tracing accuracy (%) of our identification among m users in total.

Model	Type	Method	AUC	Trace 10^4	Trace 10^5	Trace 10^6	Trace Avg	$SSIM(\uparrow)$	FID Diff (\downarrow)
Stable Diffusion	Post Generation	DwtDct StegaStamp	$\begin{array}{c} 0.917 \\ 1.000 \end{array}$	$76.30 \\ 99.98$	$74.70 \\ 99.98$	$72.90 \\ 99.96$	$74.63 \\ 99.97$	$0.999 \\ 0.999$	-0.36 + 0.27
	Merged Generation	Tree-Ring _{Rand} Tree-Ring _{Rings} WADIFF (Ours)	$0.999 \\ 0.999 \\ 0.999 \\ 0.999$	$0.04 \\ 0.00 \\ 98.20$	$\begin{array}{c} 0.00 \\ 0.00 \\ 96.76 \end{array}$	$\begin{array}{c} 0.00 \\ 0.00 \\ 93.44 \end{array}$	$\begin{array}{c} 0.01 \\ 0.00 \\ 96.13 \end{array}$	$\begin{array}{c} 0.457 \\ 0.575 \\ 0.999 \end{array}$	$^{+0.14}_{+0.77}_{+0.41}$
256×256 ImageNet	Post Generation	DwtDct StegaStamp	$0.936 \\ 1.000$	$71.30 \\ 99.98$	$68.10 \\ 99.98$	$65.20 \\ 99.98$	$68.20 \\ 99.98$	$0.997 \\ 0.998$	-0.05 + 0.11
	Merged Generation	TREE-RING _{Rand} TREE-RING _{Rings} WADIFF (OURS)	$0.999 \\ 0.999 \\ 1.000$	$\begin{array}{c} 0.00 \\ 0.00 \\ 99.68 \end{array}$	$\begin{array}{c} 0.00 \\ 0.00 \\ 99.38 \end{array}$	$\begin{array}{c} 0.00 \\ 0.00 \\ 98.78 \end{array}$	$0.00 \\ 0.00 \\ 99.28$	$\begin{array}{c} 0.584 \\ 0.652 \\ 0.997 \end{array}$	$^{+0.17}_{+0.23}_{+0.08}$

Robustness Analysis

Table 2: This table reports WaDiff tracing accuracy (%) and AUC under diverse data augmentations.

Model	Case	RESIZE	Blurring	Color Jitter	Noising	JPEG	Combine	Avg
Stable Diffusion	$\begin{array}{ c c } AUC \\ TRACE 10^4 \\ TRACE 10^5 \\ TRACE 10^6 \end{array}$	0.999 97.02 94.34	$0.999 \\ 97.14 \\ 94.12 \\ 87.40$	$0.999 \\ 96.00 \\ 88.56 \\ 82.14$	0.997 88.52 81.14 72.50	$0.999 \\ 93.48 \\ 87.66 \\ 80.30$	$0.999 \\ 93.02 \\ 84.26 \\ 78.04$	0.999 94.19 88.34 81.64
256×256 ImageNet	$\begin{vmatrix} \text{AUC} \\ \text{TRACE } 10^4 \\ \text{TRACE } 10^4 \\ \text{TRACE } 10^5 \\ \text{TRACE } 10^6 \end{vmatrix}$	89.46 0.999 98.90 97.78 96.02	0.999 94.48 89.90 82.42	$\begin{array}{r} 0.999 \\ 98.56 \\ 96.48 \\ 94.50 \end{array}$	$\begin{array}{r} 72.30\\ \hline 0.999\\ 91.80\\ 84.46\\ 76.26 \end{array}$	0.999 92.06 88.70 77.88	$\begin{array}{r} 78.04 \\ 0.999 \\ 91.88 \\ 85.74 \\ 76.88 \end{array}$	0.999 94.61 90.51 83.99

Examples of Watermarked Images (COCO)

Examples of Watermarked Images (ImageNet)

